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Abstract

Transitions of natural convection in an annulus between horizontal concentric cylinders are investigated theoreti-

cally by assuming two-dimensional and incompressible ¯ow ®elds. It is assumed that the inner cylinder is kept at a

higher temperature than the outer cylinder. It is con®rmed by numerical simulations that dual stable steady solutions

exist for Rayleigh numbers larger than a critical value. Bifurcation diagrams of the steady solutions are obtained by

Newton±Raphson's method for various values of ratio of the inner cylinder diameter to the gap width and their linear

stability is investigated. The origin of the dual solutions is clari®ed from the bifurcation analysis. Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Natural convection in an annulus between horizontal

concentric cylinders is one of the most primitive models

for heat exchangers. The convection always occurs when

the inner cylinder is kept at a higher temperature than

the outer cylinder even for very small magnitudes of

temperature di�erence. The ¯ow pattern of the convec-

tion is determined depending upon a set of parameters

(A, Ra, Pr), where the aspect ratio A is the ratio of inner

cylinder diameter D�i to the gap width L� (A � D�i =L�), Ra
is the Rayleigh number and Pr the Prandtl number.

Steady convection is attained at small values of the

Rayleigh number irrespective of the values of A or Pr,

whose ¯ow pattern consists of two large circulations

opposed symmetrically in both sides of the vertical

center line of the circular annulus. The steady convec-

tion has been called as a crescent-shaped convection,

which is characterized by an upward ¯ow at the top

region of the annulus. The ¯ow and temperature ®elds of

the crescent-shaped convection have been extensively

investigated experimentally and numerically (for in-

stance, see [1,2]).

The instability of the crescent-shaped convection of

¯uids with moderate values of the Prandtl number has

been investigated extensively. Powe et al. [3] made ex-

periments of the natural convection of air (Pr � 0:7) by

visualizing ¯ow patterns, and categorized the ¯ow pat-

terns obtained by their experiments and accumulated

results by other researchers in a parameter space of (A,

Ra). In the range of the aspect ratio 0 < A < 2:8, the

instability of the crescent-shaped convection induces an

unsteady two-dimensional convection, which is charac-

terized by oscillations about the longitudinal axis of the

cylinders at the top region of the annulus. For 2:8 <
A < 8:5, an oscillatory convection exists above a critical

Rayleigh number, which is characterized by a three-di-

mensional spiral motion in the upper portion of the

annulus. For A > 8:5, two-dimensional multicellular

convections appear as a result of instability of the cres-

cent-shaped convection. This classi®cation was con-

®rmed by two-dimensional numerical simulations by

Rao et al. [4].

Occurrences of dual steady solutions at Rayleigh

numbers larger than a critical value were pointed out by

Yoo [5], who made two-dimensional numerical simula-

tions for air (Pr � 0:7) in the range of aspect ratio

0:16A6 10. He observed dual steady solutions at

Ra > Rac � 3800 for a small value of aspect ratio

A � 1:25. The natural convection which appears at
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Ra > Rac has a couple of counter-rotating vortices in the

top region of the annulus and the direction of the ¯ow is

downward at the top of the annulus. We call this type of

convection as a downward two vortex ¯ow. It was found

that the features of steady solutions for medium aspect

ratios (2:8 < A < 8:5) are similar to those for large as-

pect ratios (A > 8:5). For A � 10, both types of con-

vections are realized at Ra > Rac � 1900 and the

crescent-shaped convection changes into a steady

multicellular convection with two couples of vortices in

the top region of the annulus when the Rayleigh number

exceeds another critical value of about 3000, which is

consistent with the results of Rao et al. [4]. We call this

type of convection as an upward four vortex ¯ow since

the ¯ow direction is upward at the top of the annulus.

Choi and Kim [6] studied the linear stability of the

crescent-shaped convection of air (Pr � 0:71) by solving

the linear equation for three-dimensional disturbances

with a time marching method. It was shown that the

principle of exchange of stabilities is valid for A P 2:1,

which implies that the resultant three-dimensional spiral

¯ow is not periodic in time for A P 2:1.

The linear stability theory for parallel ¯ows was ap-

plied to the natural convection by Walton [7] and Dyko

et al. [8], where an expansion in inverse powers of the

aspect ratio A is employed. Dyko et al. [8] evaluated the

critical Rayleigh numbers for the three-dimensional in-

stability by using the linear stability theory and the en-

ergy method, and concluded that the instability is

subcritical. However, the physical meaning of the

`instability' is unclear because there are two types

of instabilities, explained by a subcritical pitchfork

bifurcation and a trans-critical bifurcation, for such a

case.

Thus, accumulated results on the pattern formation

in a natural convection in a horizontal annulus revealed

that the crescent-shaped convection changes into various

types of convection depending upon the aspect ratio of

the annulus as the Rayleigh number is increased. How-

ever, it is still unclear which kind of instability may in-

duce the convection to change its shape with the increase

or decrease of the Rayleigh number. In this paper, we

will con®rm the appearances of the convection patterns

reported so far by two-dimensional numerical simula-

tions and then seek the reason why the patterns are re-

alized for a given set of parameters (A, Ra) by obtaining

the whole bifurcation diagram of the solution branches

for the steady natural convections with Newton±Raph-

son's iteration method. The stability of the steady state

solution is analyzed by using the linear stability theory

and the critical Rayleigh numbers for the appearance of

di�erent types of convections are evaluated from the

bifurcation diagram. We assume that the ¯uid ®lled in

the annulus is air with the Prandtl number being 0.7.

2. Mathematical formulation

Consider a convective motion of ¯uid con®ned in an

annulus between horizontal concentric circular cylinders

with the diameters of inner and outer cylinders D�i and

D�o, respectively. Fig. 1 shows the geometry of the an-

nulus and the coordinates system, where r� is taken

along the radial direction and h is measured clockwise

Nomenclature

A aspect ratio of the inner cylinder diameter to

gap width, D�i =L�

D�i ;D
�
o diameters of inner and outer cylinders,

respectively

g� acceleration due to gravity

L� gap width of the annulus, �D�o ÿ D�i �=2

Pr Prandtl number, m�=j�

Ra Rayleigh number, cgdT �L�3=�m�j��
RaS Rayleigh number at the saddle-node bifur-

cation point

RaT Rayleigh number at the virtual trans-critical

bifurcation point

r nondimensional radial coordinate

T nondimensional temperature
~Tn;

~~T n modi®ed nth order Chebyshev polynomials

T �i ; T
�
o temperatures at the inner and outer cylin-

ders, respectively, (dT � � T �i ÿ T �o )

t nondimensional time

u; v nondimensional velocity components in the

radial and azimuzal directions

u1 radial velocity at �r; h� � ��A� 1�=2; 0�

Greek symbols

c� coe�cient of thermal expansion

g stretched coordinate in the radial direction

h azimuzal coordinate

j� thermal di�usivity

k0 linear growth rate of the disturbance

m� kinematic viscosity

U solution of heat conduction equation for the

motionless state

/ nondimensional temperature deviation

w nondimensional stream function

Subscripts

� steady state solution
0 disturbance

^ Fourier coe�cient of the disturbance
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from the upward vertical plane through the center of

cylinders. We represent physical quantities with its di-

mension by attaching a superscript � with it. The inner

and outer cylinder surfaces are maintained at di�erent

uniform temperatures T �i and T �o respectively, where

T �i > T �o is assumed. We take the gap width

L� � �D�o ÿ D�i �=2 as the representative length scale,

L�2=j� as the time scale, and dT � � T �i ÿ T �o as the tem-

perature scale to make all the physical quantities non-

dimensional.

We express the nondimensional temperature T of the

¯uid as a sum of the solution U of heat conduction

equation for motionless state and its deviation / as

T � U� /, where

U � a log r � b; a � 1= log
A

A� 2

� �
;

b � ÿ log
A� 2

2

� ��
log

A
A� 2

� �
:

We assume a two-dimensional ¯ow ®eld and adopt the

Boussinesq approximation, then the dynamical equa-

tions for the stream function w and the temperature

deviation / are written in a nondimensional form as:

oDw
ot
ÿ 1

r
J�w;Dw� � PrD2w� 1

r
Pr Ra

o/
oh

cos h

� Pr Ra
o/
or

�
� a

r

�
sin h; �1�

o/
ot
ÿ 1

r
J�w;/� � a

r2

ow
oh
� D/; �2�

where

J�f ; g� � o�f ; g�
o�r; h� ; D � o2

or2
� 1

r
o
or
� 1

r2

o2

oh2
: �3�

The ¯ow ®eld is characterized by three nondimen-

sional parameters, i.e., the Rayleigh number Ra �
c�g�dT �L�3=�j�m��, the Prandtl number Pr � m�=j� and

the aspect ratio A � D�i =L�, where c�, j� and m� are the

coe�cients of thermal expansion, kinematic viscosity,

thermal di�usivity of the ¯uid, respectively, and g� is the

acceleration due to the gravity.

The surfaces of inner and outer cylinders are assumed

to be rigid and perfectly thermal conducting. Then, the

boundary conditions are written as

w � ow
or
� 0; / � 0; at r � A

2
and

A
2
� 1 �4�

and the periodic boundary condition is satis®ed in the

azimuzal direction for an arbitrary integer m so that

w�r; h� � w�r; h� 2mp�; /�r; h� � /�r; h� 2mp�: �5�

3. Numerical simulation of the dynamical equations

The dynamical equations (1) and (2) are solved nu-

merically by using a ®nite di�erence approximation for

the time derivative and expansions in terms of Cheby-

shev polynomials and Fourier functions for the r and h
dependences of w and /.

For the convenience of numerical simulations, we

transform the variable r � �A=2;A=2� 1� to g � �ÿ1; 1�
by using the relation

g � 2�r ÿ 1
2
�A� 1��: �6�

Then, we expand the stream function w and the

temperature deviation / by a series of Chebyshev

polynomials and Fourier functions as

w�g; h; t� �
XM=2

m�ÿM=2�1

XN

n�0

amn�t�eeTn�g�eimh;

/�g; h; t� �
XM=2

m�ÿM=2�1

XN

n�0

bmn�t�eTn�g�eimh; �7�

where the functions eTn�g� and
eeTn�g� de®ned by

eTn�g� � �1ÿ g2�Tn�g�; eeTn�g� � �1ÿ g2�2Tn�g�

are the modi®ed nth order Chebyshev polynomials

which satisfy the boundary conditions (4) for w and /,

respectively. The coe�cients �amn�t�; bmn�t��T depend

only on t. The integers M and N are the truncation

parameters of the expansion.

Substituting Eq. (7) into Eqs. (1) and (2), and using

the orthogonality of Fourier functions together with the

collocation method in the g-direction, we obtain a set of

ordinary di�erential equations for amn�t� and bmn�t�. The

set of equations is solved by the ®nite di�erence method

with a time increment Dt, where the Crank±Nicholson

Fig. 1. Con®guration and coordinates.
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scheme is used for the linear term, the Adams±Bashforth

scheme for the nonlinear term, and the pseudo-spectrum

method is utilized for the nonlinear term. The colloca-

tion points are taken as

gi � cos��i� 1�p=�N � 2�� �i � 0; 1; . . . ; 2N � 1�:
As for initial conditions, we adopt various kinds of

¯ow and temperature ®elds, among which we choose

two cases as typical examples expressed as initial con-

dition A: Re�amn� � Im�bmn� � 0, Im�amn� � Re�bmn�
� 0:2 for all �m; n�, and initial condition B: Re�amn� �
Im�bmn� � 0, Im�amn� � Re�bmn� � ÿ0:2 for all �m; n�.
The direction of the ¯ow is upward or downward at the

top of the annulus in the initial conditions A and B,

respectively.

We adopt a radial velocity u1 at �r; h� � ��A� 1�=
2; 0�, the middle between the two circular cylinders in the

top region of the annulus, as a representative quantity

which characterizes the dynamical property of the non-

linear solutions. We have made numerical simulations

for A � 10. The magnitude of the time step is taken as

Dt � 1:0� 10ÿ3 and the truncation parameters are taken

as M � 64, N � 14, which are con®rmed being large

enough by comparing results for various values of M

and N.

We con®rmed that the convection approaches to a

steady state regardless of the initial condition for

Ra � 1800, whose ¯ow pattern is a crescent-shaped

convection. The velocity u1 approaches rapidly to a

constant value of u1 � 0:846 for both initial conditions

A and B. On the other hand, the steady state solution for

Ra � 5000 di�ers depending upon the initial condition.

The velocity u1 approaches to a constant value of

u1 � 9:66 for the initial condition A, whereas it attains

to a di�erent value of u1 � ÿ12:77 for the initial con-

dition B, which are indicated by A and B in Fig. 2. The

¯ow patterns of the steady state solutions attained from

the initial conditions A and B are also depicted for their

upper parts in Fig. 2. For the initial condition A, the

¯ow pattern of the steady state solution consists of two

couples of small vortices in the top region and two large

circulations, which we call the upward four vortex ¯ow.

On the other hand, the ¯ow ®eld attained from the initial

condition B consists of two small vortices in the top

region and two large circulations, which we call the

downward two vortex ¯ow.

4. Nonlinear steady state solution and the stability

The steady state equations for the steady state solu-

tion � �w; �/� are obtained by dropping the terms o=ot in

Eqs. (1) and (2). The boundary conditions in the radial

direction for the steady solution � �w; �/� are the same with

Eq. (4) for �w;/�, while we assume a symmetry condi-

tion �w�r; h� � ÿ �w�r;ÿh�, �/�r; h� � �/�r;ÿh� for � �w; �/�
along the vertical center line of the annulus in place of

the periodic condition (5) for �w;/�.
For numerical calculations of the steady state solu-

tion, we expand the solution �w and �/ in a similar way to

those for numerical simulations explained in the pre-

vious section. Substituting the expansion (7) into the

steady state equations, and utilizing the collocation

method, we obtain a set of algebraic equations for the

coe�cients amn and bmn, where the collocation points are

adopted as gi � cos��i� 1�p=�N � 2�� �i � 0; 1; . . . ;N�
and hi � �2i� 1�p=2�M � 1� �i � 0; 1; . . . ;M� in a half

of the whole region (06 h6 p) by considering the sym-

metry. The set of algebraic equations for the coe�cients

is solved numerically by Newton±Raphson's method.

The stability of the nonlinear steady state solution is

investigated by adding a disturbance to it and observing

the time dependence of the disturbance. Thus, we ex-

press the stream function w and the temperature / by

the sum of the steady solution � �w; �/� and a disturbance

�w0;/0� as

w�r; h; t� � �w�r; h� � w0�r; h; t�;
/�r; h; t� � �/�r; h� � /0�r; h; t�:
The disturbance (w0�x; z; t�;/0�x; z; t�) is assumed to have

the time dependence expressed as w0�r; h; t� � ŵ�r; h�ek0t

and /0�r; h; t� � /̂�r; h�ek0 t, where k0 is complex in gen-

eral and its real part Re�k0� shows the linear growth rate

of the disturbance. If Im�k0� � 0 when Re�k0� vanishes, it

is said that an exchange of stabilities happens, and then

the steady ¯ow make a transition to another steady

Fig. 2. Bifurcation diagram. A � 10. u1: radial velocity at the

center of the top of the annulus. Solid lines: stable steady state

solutions. Dashed line: unstable steady state solution. S: saddle-

node bifurcation point. T: virtual trans-critical bifurcation

point.
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state. Such a transition is classi®ed into a pitchfork bi-

furcation, a saddle-node bifurcation or a trans-critical

bifurcation by the bifurcation theory. If Im�k0� 6� 0 when

Re�k0� vanishes, the steady solution is unstable to an

oscillatory disturbance and it make a transition to a

periodic solution with the angular velocity Im�k0�. Such

a transition is called a Hopf bifurcation.

Substituting w � �w� w0 and / � �/� /0 into Eqs. (1)

and (2), then subtracting the steady state equations from

the resultant equations and dropping nonlinear terms of

the disturbance ŵ and /̂, we obtain the following lin-

earized equations for the disturbance

k0Dŵ � 1

r
J� �w; /̂�
n

� J�ŵ; �/�
o
� PrD2ŵ

� 1

r
Pr Ra

o/̂
oh

cos h� Pr Ra
o/̂
or

sin h; �8�

k0/̂ � 1

r
J� �w; /̂�
n

� J�ŵ; �/�
o
ÿ a

r2

oŵ
oh
� D/̂: �9�

The boundary conditions for the disturbances �ŵ; /̂�
are the same with Eqs. (4) and (5) for �w;/�. The dis-

turbance is decomposed into two modes according to

the symmetry of the ¯ow pattern along the vertical

center line, which are symmetric (s)- and anti-symmetric

(a)-modes, and the two modes can be treated separately.

As for numerical calculations of the linear growth

rate, we expand the disturbance ŵ and /̂ in Fourier

functions and Chebyshev polynomials as

�s�-mode : ŵ�g; h� �
XM

m�0

XN

n�0

amn
eeT m�g� sinf�n� 1�hg;

/̂�g; h� �
XM

m�0

XN

n�0

bmneTm�g� cos�nh�;
�10�

�a�-mode : ŵ�g; h� �
XM

m�0

XN

n�0

amn
eeTm�g� cos�nh�;

/̂�g; h� �
XM

m�0

XN

n�0

bmneTm�g� sinf�n� 1�hg
�11�

for symmetric (s)- and anti-symmetric (a)-modes, re-

spectively. Substituting the expansions (10) or (11) into

Eqs. (8) and (9), and using the collocation method, we

obtain a set of eigenvalue equations in a matrix form as

Aa � k0Ba: �12�
where

a � �a00; a01; . . . ; a2M�1;2N�1; b00; b01; . . . ; b2M�1;2N�1�T

is a vector of 2� �2M � 2� � �2N � 2� and A, B are

matrices of f2��2M � 2�� �2N � 2�g�f2��2M � 2��
�2N � 2�g. The eigenvalue k0 with a maximum real part

determines the stability characteristics of the steady so-

lution and the corresponding eigen vector represents the

¯ow and temperature ®elds of the disturbance. The

eigenvalue problem of the matrix is solved by a double

QR method.

The steady state solutions and their growth rates are

calculated for 16A6 20 and Ra6 5000. All the nu-

merical calculations are made with double precisions

and the values of the truncation parameters in Eqs. (10)

and (11) are taken as M � 64, N � 14. The numerical

results are con®rmed to be valid up to four signi®cant

digits by increasing the truncation parameters M and N

up to M � 128 and N � 28.

Numerical simulations of dynamical equations have

revealed that the solution approaches to one of the three

steady states, i.e., the crescent-shaped convection,

downward two vortex and upward four vortex ¯ows,

after enough time elapsed for Ra < 5000 depending on

the initial condition and the Rayleigh number. We cal-

culate the steady state solutions directly and obtain the

whole bifurcation diagram of the solutions. As a repre-

sentative quantity which characterizes the nonlinear

steady state solution, we adopt the radial velocity u1 at

�r; h� � ��A� 1�=2; 0� also in this section.

The bifurcation diagram for A � 10 is shown in

Fig. 2, where u1 is depicted against Ra in the range of

06Ra6 5000. The solid and dashed lines show the

stable and unstable steady state solutions, respectively,

in this ®gure. The line OTC indicates the crescent-

shaped convection and the lines TA and TSB indicate

the bifurcated ¯ows. The solution on the bifurcated

branch TA is the upward four vortex ¯ow and the so-

lution on TSB is the downward two vortex ¯ow. It is

apparently seen from this ®gure at ®rst sight that the

upward four vortex and downward two vortex ¯ows

bifurcate as a trans-critical bifurcation from the bifur-

cation point T. However, we will show later for the case

of A � 5 that the trans-critical bifurcation inevitably

becomes imperfect due to the inherent ``imperfection''

because of the curvature of the boundaries at the top

region of the annulus, and that there are two continuous

lines, OTA and CTSB. And the line OTC is discontin-

uous at T. The ¯ow patterns of solution on each branch

for Ra � 5000 are shown in Fig. 2, as typical examples.

The critical values of the Rayleigh numbers at the

points indicated by S and T are evaluated as

RaS � 1914:1 and RaT � 1920:7, respectively. The point

S is a saddle-node bifurcation point or a turning point.

And the point T is a virtual trans-critical bifurcation

point though the bifurcation is imperfect. We have ®tted

the line OC and ASB in Fig. 2 with an straight line and a

parabola, and determined the virtual trans-critical point

by their intersection.

The bifurcation structure for A � 10 is summarized

as follows. There is one steady state solution and the

¯ow is the crescent-shaped convection for Ra < RaS �
1914:1. As Ra increases, there appears two other steady

state solutions at RaS, one of which, ST, is unstable and

the other, SB, stable. As Ra increases further, the

J. Mizushima et al. / International Journal of Heat and Mass Transfer 44 (2001) 1249±1257 1253



number of the steady solution does not change at

Ra � RaT, but the solution on the branch OC changes

from the stable steady state solution to the unstable

solution at the point T, and the branch STA changes

from the unstable steady state solution to the stable

solution. In this way, the stabilities of the two steady

solutions on the branches OC and STA are exchanged at

T. The explanation above is made by assuming that the

trans-critical bifurcation is virtually perfect. However,

the bifurcation is imperfect rigorously as noted before.

Then, the bifurcation structure needs an alternative ex-

planation. Thus, the bifurcation diagram of Fig. 2 is

summarized as: there is a stable smooth transition

branch OTA and there appear two branches at S, one of

which, STC, is unstable and the other, SB, stable.

The line OTC indicates the crescent-shaped convec-

tion in Fig. 2. The linear stability of the crescent-shaped

convection is investigated by solving Eqs. (8) and (9)

under appropriate boundary conditions. It is found that

the eigenvalue k0 is real, i.e., the exchange of stabilities is

valid for Ra6 5000 and that the most unstable mode is

the (s)-mode. The linear growth rate Re�k0� is depicted in

Fig. 3. It is seen that the crescent-shaped convection is

stable for 0 < Ra < RaT � 1920:7, while it is unstable for

Ra > RaT, which agrees with the result of the bifurcation

analysis. The ¯ow pattern of the disturbance at the point

P �Ra � 2000� on the branch TC in Fig. 2 is depicted in

Fig. 4.

The (s)-mode disturbance superposed on the cres-

cent-shaped convection grows and saturates at a ®nite

magnitude of the amplitude. Thus, the bifurcated solu-

tion is thought to consist of the crescent-shaped con-

vection and the saturated disturbance. So, the most

unstable mode of disturbance depicted in Fig. 4 may be

compared with the di�erence of the bifurcated upward

four vortex or downward two vortex ¯ows from the

unstable crescent-shaped convection. The ¯ow patterns

of the di�erence of the steady state solutions from the

crescent-shaped convection at the points P0 and P00 in

Fig. 2 are calculated and compared with the distur-

bance shown in Fig. 4. The patterns of the three ¯ow

®elds of the disturbances are too similar to be distin-

guished with each other, so we omit showing them to

save space.

The bifurcation diagram for A � 5 constitutes of two

lines OT0A and CT00SB as clearly seen in Fig. 5(a). The

point indicated by S is a saddle-node bifurcation point in

this ®gure, while the trans-critical bifurcation point

cannot be de®ned exactly, so we have de®ned the points

T0 and T00 as the nearest points between the lines OT0A
and CT00SB. Fig. 5(b) is an enlargement of Fig. 5(a) in a

neighbor of the points T0;T00. It is seen from Fig. 5(b)

that the bifurcation is an imperfect trans-critical bifur-

cation. It is our conclusion that the bifurcation structure

for A � 10 is also the imperfect trans-critical bifurcation

as well as the case of A � 5 although the rigorous proof

is cast to the weakly nonlinear stability theory. The bi-

furcation diagram for A � 2 is shown in Fig. 5(c). Only

the saddle-node bifurcation point S is seen in Fig. 5(c)

and the points T0 and T00 de®ned for the case of A � 5

cannot be well de®ned for A � 2.

We calculated the critical Rayleigh numbers RaS of

the saddle-node bifurcation for various aspect ratios.

The critical Rayleigh numbers RaS are tabulated in

Table 1 and shown against A in Fig. 6 together with the

critical value RaT of the virtual trans-critical bifurcation.

The value RaT is evaluated by the intersecting point of

the two lines, OC and ASB, where virtual lines OC and

ASB indicate the basic crescent-shaped convection and

bifurcated multicellular ¯ows (see Fig. 5(a)).Fig. 3. Linear growth rate Re�k0�. A � 10.

Fig. 4. Flow pattern of the disturbance. Ra � 2000;A � 10.
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The following asymptotic expressions for RaS and

RaT are obtained for A� 1 from the numerical data of

A � 10 and 20 in Table 1 by assuming an asymptotic

form c1=�1ÿ c2=A� with two constants c1 and c2:

Fig. 5. Bifurcation diagrams. u1: radial velocity at the center of the top of the annulus. S: saddle-node bifurcation point: (a) A � 5;

(b) enlargement of ®gure (a), A � 5; (c) A � 2.

Fig. 6. Critical Rayleigh numbers RaS and RaT.

Table 1

Critical Rayleigh numbers RaS and RaT for various aspect

ratios A

A RaS RaT

1 4471.6 ±

2 2845.5 ±

3 2434.5 ±

4 2250.9 2837.0

5 2142.7 2312.0

6 2070.1 2158.0

10 1914.1 1921.0

20 1800.6 1800.0
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RaS � 1699:5

1ÿ 1:119=A
� 1699:5� 1901:7

A
;

RaT � 1694:6

1ÿ 1:177=A
� 1694:6� 1994:5

A
:

�13�

The critical Rayleigh number obtained by Walton [7] is

written as

Rac � 1707:8� 516:8

A
: �14�

In the above expressions (13), the asymptotic values of

RaS and RaT tends to 1699.5 and 1694.6, respectively, as

A!1. These asymptotic values are in good agreement

with the critical Rayleigh number Rac � 1707:8 for the

Rayleigh±B�enard convection between two in®nite par-

allel plates. Namely, it is thought that in the limit of

A!1 the bifurcation structure near h � 0° approaches

the pitchfork bifurcation as the case of the Rayleigh±

B�enard convection. It is needless to say that the ex-

pression by Walton [7] coincides with the critical value

of the Rayleigh-B�enard convection for A!1 because

his theory is based on the expansion by an inverse

porwers of the aspect ratio from A!1, i.e., the Ray-

leigh±B�enard problem. The critical Rayleigh number

given in Eq. (14) should be compared with RaT where the

crescent-shaped convection becomes unstable, and the

expression (14) may be thought to give rather a good

approximation for RaT in (13) if we consider the rough

approximations assumed in Walton [7] though the co-

e�cients of the term 1=A di�er almost four times in

magnitude between them. On the other hand, it is

thought that the bifurcation structure near the equator

(h � 90°) approaches to the property of the natural

convection in an in®nite vertical slot and the steady

secondary ¯ow occurs at the Grashof number

Gr � Rs=Pr � 8000 for the ¯uid with Pr < 12:5 (see [7]).

5. Discussion

There have been many reports for the transition of

the natural convection in a horizontal annulus between

two concentric cylinders. The most of them are nu-

merical simulations, and their results have shown ex-

changes of ¯ow patterns and multiple stable state

solutions. The others are linear stability analyses based

on the parallel ¯ow assumption. The linear stability

theory for parallel ¯ows was shown to give a rather

good approximate expression for the critical Rayleigh

number RaT for large values of A. However, it cannot

predict the imperfect trans-critical instability of the

convection which has the inherent ``imperfection'' due

to the curvature e�ect of the boundaries at the top

region of the annulus. We have solved the full basic

equations numerically and obtained the whole bifur-

cation structure of the steady state solutions regardless

of their stability and clari®ed the meaning of the

``instability'' of the natural convection.

Yoo's results for the critical Rayleigh number above

which multiple stable steady solutions exist are indicated

by circles in Fig. 7, where the solid line shows our result

for RaS. In fact, there are two stable and one unstable

steady state solutions for Ra > RaS, so Yoo's results are

in complete agreement with ours. The dotted lines show

the transition lines proposed by Powe et al. [3]. The line

AB shows the critical value of Ra where the natural

convection becomes oscillatory keeping its two-dimen-

sionality of the ¯ow ®elds for A < 2:8. The crescent-

shaped steady convection becomes three-dimensional

spiral ¯ows in the region above CD for 2:8 < A < 8:5.

The transition from the crescent-shaped convection to

multi-cellular convections occurs at the critical Rayleigh

number indicated by EF for Ra > 8:5. Transitions to

oscillatory or chaotic convections are very interesting

phenomena, and researches to clarify the root(s) to

turbulent convections are in progress.

We have concluded that the bifurcation is an im-

perfect trans-critical bifurcation for every aspect ratio.

The trans-critical bifurcation is imperfect even for very

large values of aspect ratio such as A � 10, although the

bifurcation diagram for A � 10 is seen at ®rst sight to

have a trans-critical bifurcation point T in Fig. 2. This is

contrast to Taylor±Couette ¯ow in a comparatively

short annulus. The trans-critical bifurcation of the

Taylor±Couette ¯ow becomes imperfect for aspect ratios

larger than a critical value, while it is perfect for smaller

values of the aspect ratio [9]. The weakly nonlinear

stability analysis may be helpful for a rigorous proof

Fig. 7. Transition diagram. Circles: the critical Rayleigh num-

bers obtained by Yoo [5], above which multiple stable steady

solutions exist. Dotted lines: transition lines proposed by Powe

et al. [3].
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that the bifurcation is imperfect. The imperfect trans-

critical bifurcation is described by a single variable x as

dx=dt � k0x� k1x2 � k2x3 � k3. The bifurcation is im-

perfect if k3 6� 0. It is noted that both the coe�cients k1

and k3 vanish simultaneously as A!1 for the natural

convection in a horizontal annulus to yield the perfect

pitchfork bifurcation as the case of the Rayleigh±B�enard

convection. Then, the trans-critical and the saddle-node

points, T and S, coincide.
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